Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Review
Add like
Add dislike
Add to saved papers

Tracking genomic instability within irradiated and bystander populations.

Over the past two decades, our understanding of radiation biology has undergone a fundamental shift in paradigms away from deterministic 'hit-effect' relationships and towards complex ongoing 'cellular responses'. These responses include now familiar, but still poorly understood, phenomena associated with radiation exposure such as genomic instability and bystander effects. Although these responses share some common features (e.g. they occur at high frequency following very low doses, are heterogeneous in their induction and are observed at time points far removed from the initial radiation exposure), the precise relationship between genomic instability and bystander effects remains to be elucidated. This review will provide a synthesis of the known, and proposed, interrelationships among irradiated and bystander cellular responses to radiation. It also discusses our current experimental approach for gaining a clearer understanding of the relationship between damage induction and long-term effects in both irradiated and bystander cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app