Scaling theory of DNA confined in nanochannels and nanoslits

Theo Odijk
Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics 2008, 77 (6): 060901
A scaling analysis is presented of the statistics of long DNA confined in nanochannels and nanoslits. It is argued that there are several regimes in between the de Gennes and Odijk limits introduced long ago. The DNA chain folds back on itself giving rise to a global persistence length that may be very large owing to entropic deflection. Moreover, there is an orientational excluded-volume effect between the DNA segments imposed solely by the nanoconfinement. These two effects cause the chain statistics to be intricate leading to nontrivial power laws for the chain extension in the intermediate regimes. It is stressed that DNA confinement within nanochannels differs from that in nanoslits because the respective orientational excluded-volume effects are not the same.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Trending Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"