COMPARATIVE STUDY
JOURNAL ARTICLE
Add like
Add dislike
Add to saved papers

Na+/Ca2+ exchanger inhibitor ameliorates impaired endothelium-dependent Na+ relaxation induced by high glucose in rat aorta.

The present study was designed to investigate the effects of KB-R7943, an inhibitor of the Na+/Ca2+ exchanger, on impaired endothelium-dependent relaxation (EDR) induced by high glucose in rat isolated aorta. Both acetylcholine (ACh)-induced EDR and sodium nitroprusside (SNP)-induced endothelium-independent relaxation (EIR) were measured after aortic rings had been exposed to high glucose in the absence and presence of KB-R7943. Coincubation of aortic rings with high glucose (25 mmol/L) for 24 h resulted in a significant inhibition of EDR, but had no effect on EIR. After incubation of aortic rings in the presence of both KB-R7943 (0.1-10 micromol/L) and high glucose for 24 h, significantly attenuation of impaired EDR was observed. This protective effect of KB-R7943 (10 micromol/L) was abolished by superoxide dismutase (SOD; 200 U/mL) and l-arginine (3 mmol/L), whereas d-arginine (3 mmol/L) had no effect. Similarly, high glucose decreased SOD activity and the release of nitric oxide (NO) and increased superoxide anion (O2(-)) production in aortic tissue. KB-R7943 significantly decreased O2(-) production and increased SOD activity and NO release. These results suggest that KB-R7943 can restore impaired EDR induced by high glucose in rat isolated aorta, which may be related to the scavenging of oxygen free radicals and enhanced NO production.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app