Spatial and temporal variability in VOC levels within a commercial retail building

B M Eklund, S Burkes, P Morris, L Mosconi
Indoor Air 2008, 18 (5): 365-74

UNLABELLED: A study was performed to characterize the concentration of dozens of volatile organic compounds (VOCs) at 10 locations within a single large building and track these concentrations over a 2-year period. The study was performed at a shopping center (strip mall) in New Jersey. A total of 130 indoor air samples were collected from 10 retail stores within the shopping center and analyzed for 60 VOCs by US EPA Method TO-15. Indoor concentrations of up to 55,100 microg/m(3) were measured for individual VOCs. The indoor/outdoor ratio (I/O) was as high as 1500 for acetone and exceeded 100 at times for various compounds, indicating that significant indoor air sources were present. A large degree of spatial variability was observed between stores within the building, with concentrations varying by three to four orders of magnitude for some compounds. The spatial variability was dependent on the proximity of the sampling locations to the indoor sources. A large degree of temporal variability also was observed for compounds emitted from indoor sources, but the temporal variability generally did not exceed two standard deviations (sigma). For compounds not emitted from indoor sources at significant rates, both the spatial and temporal variability tended to range within an order of magnitude at each location.

PRACTICAL IMPLICATIONS: Many cross-sectional studies have been published where the levels of volatile organic compounds (VOCs) were measured in indoor air at one or two locations for houses or offices. This study provides longitudinal data for a commercial retail building and also addresses spatial variability within the building. The data suggest that spatial and temporal variability are important considerations for compounds emitted from indoor sources. Elevated concentrations were found in retail spaces with no apparent emission sources due to their proximity to other retail spaces with emission sources.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"