JOURNAL ARTICLE

In vivo regulation of endothelium-dependent vasodilation in the rat renal circulation and the effect of streptozotocin-induced diabetes

Amanda J Edgley, Marianne Tare, Roger G Evans, Con Skordilis, Helena C Parkington
American Journal of Physiology. Regulatory, Integrative and Comparative Physiology 2008, 295 (3): R829-39
18635451
We assessed the relative contributions of endothelium-derived relaxing factors to renal vasodilation in vivo and determined whether these are altered in established streptozotocin-induced diabetes. In nondiabetic rats, stimulation of the endothelium by locally administered ACh or bradykinin-induced transient renal hyperemia. Neither basal renal blood flow (RBF) nor renal hyperemic responses to ACh or bradykinin were altered by blockade of prostanoid production (indomethacin) or by administration of charybdotoxin (ChTx) plus apamin to block endothelium-derived hyperpolarizing factor (EDHF). In contrast, combined blockade of nitric oxide (NO) synthase, N(omega)-nitro-l-arginine methyl ester (l-NAME), and prostanoid production reduced basal RBF and the duration of the hyperemic responses to ACh and bradykinin and revealed a delayed ischemic response to ACh. Accordingly, l-NAME and indomethacin markedly reduced integrated (area under the curve) hyperemic responses to ACh and bradykinin. Peak increases in RBF in response to ACh and bradykinin were not reduced by l-NAME and indomethacin but were reduced by subsequent blockade of EDHF. l-NAME plus indomethacin and ChTx plus apamin altered RBF responses to endothelium stimulation in a qualitatively similar fashion in diabetic and nondiabetic rats. The integrated renal hyperemic responses to ACh and bradykinin were blunted in diabetes, due to a diminished contribution of the component abolished by l-NAME plus indomethacin. We conclude that NO dominates integrated hyperemic responses to ACh and bradykinin in the rat kidney in vivo. After prior inhibition of NO synthase, EDHF mediates transient renal vasodilation in vivo. Renal endothelium-dependent vasodilation is diminished in diabetes due to impaired NO function.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
18635451
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"