JOURNAL ARTICLE

The electronic properties of an oxygen vacancy at ZrO(2)-terminated (001) surfaces of a cubic PbZrO(3): computer simulations from the first principles

E A Kotomin, S Piskunov, Yu F Zhukovskii, R I Eglitis, A Gopejenko, D E Ellis
Physical Chemistry Chemical Physics: PCCP 2008 August 7, 10 (29): 4258-63
18633546
Combining B3PW hybrid exchange-correlation functional within the density functional theory (DFT) and a supercell model, we calculated from the first principles the electronic structure of both ideal PbZrO(3) (001) surface (with ZrO(2)- and PbO-terminations) and a neutral oxygen vacancy also called the F center. The atomic relaxation and electronic density redistributions are discussed. Thermodynamic analysis of pure surfaces indicates that ZrO(2) termination is energetically more favorable than PbO-termination. The O vacancy on the ZrO(2)-surface attracts approximately 0.3 e (0.7 e in the bulk PbZrO(3)), while the remaining electron density from the missing O(2-) ion is localized mostly on atoms nearest to a vacancy. The calculated defect formation energy is smaller than in the bulk which should lead to the vacancy segregation to the surface. Unlike Ti-based perovskites, the vacancy-induced (deep) energy level lies in PbZrO(3) in the middle of the band gap.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
18633546
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"