Add like
Add dislike
Add to saved papers

Role of NF-kappaB and PI 3-kinase/Akt in TNF-alpha-induced cytotoxicity in microvascular endothelial cells.

The interaction of tumor necrosis factor (TNF)-alpha with the endothelium is a pivotal factor during endotoxemia. Inflammatory conditions are characterized by the activation of the transcription factor NF-kappaB and the expression of inflammatory mediators. Previous reports indicate that inhibition of NF-kappaB activation during sepsis may be beneficial to the microvasculature. In addition, the phosphatidylinositol-3-kinase/Akt signaling pathway (PI3-kinase/Akt) has been shown to be cytoprotective. In this study, we examined the effect of inhibition of NF-kappaB and PI3-kinase/Akt on cell viability, cytokine production, inducible nitric oxide synthase (iNOS) expression, and nitric oxide (NO) generation by TNF-alpha-treated cultured microvascular endothelial cells. TNF-alpha induced significant cytotoxicity and was associated with increased inflammatory cytokines and NO and increased expression of iNOS. The NF-kappaB inhibitor, pyrrolidine dithiocarbamate (PDTC), prevented these increases and significantly attenuated the TNF-alpha-induced cytotoxicity. TNF-alpha also caused PI3-kinase/Akt activation, which was further increased by PDTC and prevented by the PI3-kinase inhibitor, LY294002. Inhibition of PI3-kinase/Akt also significantly potentiated TNF-alpha-mediated cytotoxicity. LY294002 treatment resulted in the appearance of increased apoptosis, compatible with the known anti-apoptotic properties of PI3-kinase/Akt. The present results therefore demonstrate a cytotoxic effect of TNF-alpha in microvascular endothelial cells which can be attenuated by NF-kappaB inhibition. In addition, PI3-kinase/Akt activation during TNF-alpha exposure may represent a compensatory anti-necrotic and anti-apoptotic pathway. The cytoprotective effects of NF-kappaB inhibition and PI3-kinase/Akt activation may have potential implications in the treatment of endotoxemia and septic shock.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app