A variational method for geometric regularization of vascular segmentation in medical images

Ali Gooya, Hongen Liao, Kiyoshi Matsumiya, Ken Masamune, Yoshitaka Masutani, Takeyoshi Dohi
IEEE Transactions on Image Processing: a Publication of the IEEE Signal Processing Society 2008, 17 (8): 1295-312
In this paper, a level-set-based geometric regularization method is proposed which has the ability to estimate the local orientation of the evolving front and utilize it as shape induced information for anisotropic propagation. We show that preserving anisotropic fronts can improve elongations of the extracted structures, while minimizing the risk of leakage. To that end, for an evolving front using its shape-offset level-set representation, a novel energy functional is defined. It is shown that constrained optimization of this functional results in an anisotropic expansion flow which is usefull for vessel segmentation. We have validated our method using synthetic data sets, 2-D retinal angiogram images and magnetic resonance angiography volumetric data sets. A comparison has been made with two state-of-the-art vessel segmentation methods. Quantitative results, as well as qualitative comparisons of segmentations, indicate that our regularization method is a promising tool to improve the efficiency of both techniques.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"