Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Melatonin decreases matrix metalloproteinase-9 activation and expression and attenuates reperfusion-induced hemorrhage following transient focal cerebral ischemia in rats.

We have previously shown that melatonin reduces postischemic rises in the blood-brain barrier (BBB) permeability and improves neurovascular dysfunction and hemorrhagic transformation following ischemic stroke. It is known that activation of the matrix metalloproteinases (MMPs) plays a crucial role in the pathogenesis of brain edema and hemorrhagic transformation after ischemic stroke. We, herein, investigated whether melatonin would ameliorate MMP-2 and MMP-9 activation and expression in a rat model of transient focal cerebral ischemia. Adult male Sprague-Dawley rats were subjected to a 90-min middle cerebral artery (MCA) occlusion using an intraluminal filament. Melatonin (5 mg/kg) or vehicle was intravenously injected upon reperfusion. Brain infarction and hemorrhage within infarcts were measured, and neurological deficits were scored. The activity and expression of MMP-2 and MMP-9 were determined by zymography, in situ zymography and Western immunoblot analysis. Cerebral ischemia-reperfusion induced increased pro-MMP-9 and MMP-9 activity and expression 24 hr after reperfusion onset. Relative to controls, melatonin-treated animals, however, had significantly reduced levels in the MMP-9 activity and expression (P < 0.01), in addition to reduced brain infarct volume and hemorrhagic transformation as well as improved sensorimotor neurobehavioral outcomes. No significant change in MMP-2 activity was observed throughout the course experiments. Our results indicate that the melatonin-mediated reductions in ischemic brain damage and reperfusion-induced hemorrhage are partly attributed to its ability to reduce postischemic MMP-9 activation and increased expression, and further support the fact that melatonin is a suitable as an add-on to thrombolytic therapy for ischemic stroke patients.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app