JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Interactions of two transcriptional repressors and two transcriptional activators in modulating gibberellin signaling in aleurone cells.

Plant Physiology 2008 September
Gibberellins (GAs) regulate many aspects of plant development, such as germination, growth, and flowering. The barley (Hordeum vulgare) Amy32b alpha-amylase promoter contains at least five cis-acting elements that govern its GA-induced expression. Our previous studies indicate that a barley WRKY gene, HvWRKY38, and its rice (Oryza sativa) ortholog, OsWRKY71, block GA-induced expression of Amy32b-GUS. In this work, we investigated the functional and physical interactions of HvWRKY38 with another repressor and two activators in barley. HvWRKY38 blocks the inductive activities of SAD (a DOF protein) and HvGAMYB (a R2R3 MYB protein) when either of these proteins is present individually. However, SAD and HvGAMYB together overcome the inhibitory effect of HvWRKY38. Yet, the combination of HvWRKY38 and BPBF (another DOF protein) almost diminishes the synergistic effect of SAD and HvGAMYB transcriptional activators. Electrophoretic mobility shift assays indicate that HvWRKY38 blocks the GA-induced expression of Amy32b by interfering with the binding of HvGAMYB to the cis-acting elements in the alpha-amylase promoter. The physical interaction of HvWRKY38 and BPBF repressors is demonstrated via bimolecular fluorescence complementation assays. These data suggest that the expression of Amy32b is modulated by protein complexes that contain either activators (e.g. HvGAMYB and SAD) or repressors (e.g. HvWRKY38 and BPBF). The relative amounts of the repressor or activator complexes binding to the Amy32b promoter regulate its expression level in barley aleurone cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app