JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Structure and evolution of the mitochondrial genomes of Haematobia irritans and Stomoxys calcitrans: the Muscidae (Diptera: Calyptratae) perspective.

We present the first two mitochondrial genomes of Muscidae dipterans for the species Haematobia irritans (the horn fly) and Stomoxys calcitrans (the stable fly). Typical insect mtDNA features are described, such as a high A+T content (79.1% and 78.9%, respectively), the preference for A+T-rich codons, and the evidence of a non-optimal codon usage. The strong A+T enrichment partially masks another nucleotide content bias maintained by A+C mutation pressure in these Muscidae mtDNAs. The analysis of this data provides a model of metazoans tRNA anticodon evolution, based on the selection hypothesis of anticodon versatility. H. irritans mitochondrial genome (16078 bp) is structurally similar to the hypothetical ancestral mitochondrial genome of arthropods and its control region (A+ T-rich region in insects) organization is consistent with the structure described for Brachycera dipterans. On the other hand, the mitochondrial genome of S. calcitrans is approximately 2kb longer (18 kb), characterized by the presence of approximately 550 bp tandem repeats in the control region, and an extra copy of trnI remarkably similar to a duplicated element of blowflies mtDNA. Putative sequence elements, involved in the regulation of transcription and replication of the mtDNA, were reliably identified in S. calcitrans control region despite the 0.8-1.5 kb gap uncovered from this genome. The use of amino acid and nucleotide sequences of concatenated mitochondrial protein-coding genes (PCGs) in phylogenetic reconstructions of Diptera does not support the monophyly of Muscomorpha, as well as the monophyly of Acalyptratae. Within the Calyptratae group, the inclusion of Muscidae (Muscoidea) as a sister group of Calliphoridae (Oestroidea) implies in a potential conflict concerning the monophyly of the superfamily Oestroidea.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app