JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

The effects of acute and repeated oroxylin A treatments on Abeta(25-35)-induced memory impairment in mice.

Neuropharmacology 2008 October
Oroxylin A is a flavonoid that is found in the roots of Scutellaria baicalensis Georgi. The aim of this study was to characterize the effects of oroxylin A on the memory impairments and pathological changes induced by Abeta(25-35) peptide in mice. The ameliorating effect of oroxylin A on memory impairment was investigated using passive avoidance and Y-maze tasks and pathological changes were identified by immunostaining and western blotting. Abeta(25-35) peptide (5nmol) was administered by intracerebroventricular injection. In the acute treatment study, a single dose of oroxylin A (5mg/kg, p.o.) treated 1h before behavioral tests was found to significantly reverse Abeta(25-35)-induced cognitive impairments based on passive avoidance and Y-maze task findings (P<0.05). Moreover, these acute effects of oroxylin A were blocked by diazepam (1mg/kg, i.p.), a GABA(A)/benzodiazepine binding site agonist (P<0.05). On the other hand, our subchronic studies revealed that oroxylin A (1 or 5mg/kg/day, p.o.) for 7 days ameliorated the memory impairment induced by Abeta(25-35) peptide. Moreover, Abeta(25-35)-induced increases in GFAP (an astroglia marker) and OX-42 (a microglia marker), and increases in iNOS positive cells in the hippocampus were found to be attenuated by subchronic oroxylin A (1 or 5mg/kg/day, i.p., P<0.05). In addition, reductions in the immunoreactivity and protein level of ChAT (a cholinergic neuronal cell marker) in the CA3 hippocampal area induced by Abeta(25-35) peptide were also attenuated by oroxylin A. Furthermore, lipid peroxidation induced by Abeta(25-35) was also reduced by oroxylin A. These results suggest that the amelioration of Abeta(25-35) peptide-induced memory impairment by oroxylin A is mediated via the GABAergic neurotransmitter system after a single administration, or by reductions in Abeta(25-35) peptide-induced astrocyte and microglia activations, iNOS expression, lipid peroxidation, and increased cholinergic neurotransmission after subchronic administration.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app