JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Were class C iron-containing superoxide dismutases of trypanosomatid parasites initially imported into a complex plastid? A hypothesis based on analyses of their N-terminal targeting signals.

Parasitology 2008 August
Trypanosomatid parasites possess 2 distinct iron-containing superoxide dismutases (Fe-SODs) designated SODA and SODC, both of which are targeted to their mitochondria. In contrast to SODAs that carry typical mitochondrial transit peptides, SODCs have highly unusual mitochondrial targeting signals. Our analyses clearly show that these pre-sequences are bipartite possessing a signal peptide-like domain followed by a transit peptide-like domain. Consequently, they resemble N-terminal extensions of proteins targeted to multi-membrane plastids, suggesting that trypanosomatids once contained a eukaryotic alga-derived plastid. Further support for this hypothesis comes from striking similarities in length, hydropathy profile, and amino acid composition of SODC pre-sequences to those of Euglena and dinoflagellate plastid proteins. To account for these data, we propose that the Trypanosomatidae initially possessed a gene encoding a mitochondrial Fe-SOD with a classical mitochondrial transit peptide. Before or after plastid acquisition, a gene duplication event gave rise to SODA and SODC. In a subsequent evolutionary step a signal peptide was linked to SODC, enabling its import into the plastid. When the trypanosomatid plastid subsequently was lost, natural selection favoured adaptation of the SODC N-terminal signal as a mitochondrial transit peptide and re-targeting to the mitochondrion.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app