Add like
Add dislike
Add to saved papers

The PAMPA technique as a HTS tool for partition coefficients determination in different solvent/water systems.

1,2-dichloroethane (DCE) and o-nitrophenyl octyl ether (o-NPOE), were tested for their ability to form artificial membranes immobilized on polycarbonate (PC) and polyvinylidene fluoride (PVDF) supporting filters using the PAMPA (parallel artificial membrane permeability assays) technique. These detailed studies provided important information on the application domain of the artificial membranes investigated. According to the nature of the organic solvent and the composition of the filter, different permeation behaviours were noted. A double permeation pathway was observed for DCE-coated with PVDF filters since hydrophilic compounds permeated the membrane through aqueous pores created by the interaction of DCE and PVDF filters, while the more lipophilic compounds were trapped in the DCE present on filters. On the other hand, the permeation through PVDF and PC filters coated with o-NPOE did not follow the same mechanisms. An interesting application emerged from these mechanistic studies, namely the use of PC filters for a first high throughput assay designed to measure o-NPOE/water partition coefficients.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app