Conformational plasticity of the Gerstmann-Sträussler-Scheinker disease peptide as indicated by its multiple aggregation pathways

Antonino Natalello, Valery V Prokorov, Fabrizio Tagliavini, Michela Morbin, Gianluigi Forloni, Marten Beeg, Claudia Manzoni, Laura Colombo, Marco Gobbi, Mario Salmona, Silvia Maria Doglia
Journal of Molecular Biology 2008 September 19, 381 (5): 1349-61
The existence of several prion strains and their capacity of overcoming species barriers seem to point to a high conformational adaptability of the prion protein. To investigate this structural plasticity, we studied here the aggregation pathways of the human prion peptide PrP82-146, a major component of the Gerstmann-Sträussler-Scheinker amyloid disease. By Fourier transform infrared (FT-IR) spectroscopy, electron microscopy, and atomic force microscopy (AFM), we monitored the time course of PrP82-146 fibril formation. After incubation at 37 degrees C, the unfolded peptide was found to aggregate into oligomers characterized by intermolecular beta-sheet infrared bands. At a critical oligomer concentration, the emergence of a new FT-IR band allowed to detect fibril formation. A different intermolecular beta-sheet interaction of the peptides in oligomers and in fibrils is, therefore, detected by FT-IR spectroscopy, which, in addition, suggests a parallel orientation of the cross beta-sheet structures of PrP82-146 fibrils. By AFM, a wide distribution of PrP82-146 oligomer volumes--the smallest ones containing from 5 to 30 peptides--was observed. Interestingly, the statistical analysis of AFM data enabled us to detect a quantization in the oligomer height values differing by steps of approximately 0.5 nm that could reflect an orientation of oligomer beta-strands parallel with the sample surface. Different morphologies were also detected for fibrils that displayed high heterogeneity in their twisting periodicity and a complex hierarchical assembly. Thermal aggregation of PrP82-146 was also investigated by FT-IR spectroscopy, which indicated for these aggregates an intermolecular beta-sheet interaction different from that observed for oligomers and fibrils. Unexpectedly, random aggregates, induced by solvent evaporation, were found to display a significant alpha-helical structure as well as several beta-sheet components. All these results clearly point to a high plasticity of the PrP82-146 peptide, which was found to be capable of undergoing several aggregation pathways, with end products displaying different secondary structures and intermolecular interactions.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"