JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Diffusion tensor imaging characteristics of the corpus callosum in mild, moderate, and severe traumatic brain injury.

BACKGROUND AND PURPOSE: The corpus callosum is an important predilection site for traumatic axonal injury but may be unevenly affected in head trauma. We hypothesized that there were local differences in axonal injury within the corpus callosum as investigated with diffusion tensor imaging (DTI), varying among patients with differing severity of traumatic brain injury (TBI).

MATERIALS AND METHODS: Ethics committee approval and informed consent were obtained. Ten control subjects (7 men, 3 women; mean age, 37 +/- 9 years) and 39 patients with TBI (27 men, 12 women; 34 +/- 12 years) were investigated, of whom 24 had mild; 9, moderate; and 6, severe TBI. Regions of interest were selected in the callosal genu, body, and splenium to calculate fractional anisotropy (FA), apparent diffusion coefficient (ADC), and the number of fibers passing through. Statistical comparison was made through analysis of variance with the Scheffé post hoc analysis.

RESULTS: Compared with controls, patients with mild TBI investigated <3 months posttrauma (n = 12) had reduced FA (P < .01) and increased ADC (P < .05) in the genu, whereas patients with mild TBI investigated > or =3 months posttrauma (n = 12) showed no significant differences. Patients with moderate and severe TBI, all investigated <3 months posttrauma, had reduced FA (P < .001) and increased ADC (P < .01) in the genu compared with controls and reduced FA in the splenium (P < .001) without significant ADC change.

CONCLUSION: Mild TBI is associated with DTI abnormalities in the genu <3 months posttrauma. In more severe TBI, both the genu and splenium are affected. DTI suggests a larger contribution of vasogenic edema in the genu than in the splenium in TBI.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app