EVALUATION STUDIES
JOURNAL ARTICLE
Add like
Add dislike
Add to saved papers

Direct and rapid electrochemical biosensing of the human interleukin-2 DNA in unpurified polymerase chain reaction (PCR)-amplified real samples.

Electrochemical detection of polymerase chain reaction (PCR)-amplified human interleukin-2 (IL-2) coding DNA sample (399bp size) without any purification and pre-treatment is described. To achieve this goal, a sensor was made by immobilization of a 20-mer oligonucleotide (chIL-2) as the probe on the pencil graphite electrode (PGE). This probe is related to the antisense strand of human interleukin-2 gene. The results showed that the electrode could effectively sense the PCR product of human interleukin-2 DNA by anodic differential pulse voltammetry (ADPV) based on guanine oxidation signal. In order to inhibit PCR components interfering effects and improve biosensing performance, various factors were investigated. We found that the desorption of non-specifically adsorbed components of the unpurified PCR samples from PGE surface is easily achieved by washing of the electrode in washing solution for about 300s. The effectiveness of this procedure was confirmed using purified PCR samples. The selectivity of the sensor was assessed with negative control PCR sample and seven different non-complementary PCR products corresponding to 16S rDNA (bigger than 1500bp) of various bacterial genuses. Diagnostic performance of the biosensor is described and the detection limit is found to be 69pM. The reliability of the electrochemical biosensing results was verified by electrophoresis of the PCR products.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app