Add like
Add dislike
Add to saved papers

Sutural strain in orthopedic headgear therapy: a finite element analysis.

INTRODUCTION: The goal of this study was to analyze the strains induced in the sutures of the midface and the cranial base by headgear therapy involving orthopedic forces. Does the mechanical signal induced in the sutures sufficiently account for a growth-influencing effect?

METHODS: A finite element model of the viscerocranium and the neurocranium was used. It consisted of 53,555 tetrahedral elements and 97,550 nodes. The strain induced in the sutures of the cranial base and the midface when applying orthopedic headgear forces of 5 and 10 N was computed and recorded with an interactive measurement tool.

RESULTS: The magnitude and the distribution of the measured strains depended on the level and the direction of the acting force. Overall, the strain values measured at the sutures of the midface and the cranial base were moderate. The measured peak values at a load of 5 N per side were usually just below 20 microstrain irrespective of the force direction. A characteristic distribution of strain values appeared on the anatomical structures of the midface and the cranial base for each vector direction. The measurements based on the finite element method provided a good overview of the approximate magnitudes of sutural strains with orthopedic headgear therapy. The signal arriving in the sutures is apparently well below threshold, since the maximum measured strains in most sutures were about 100 fold lower than the minimal effective strain. A skeletal effect of the orthopedic headgear due to a mechanical effect on sutural growth cannot be confirmed from these results.

CONCLUSIONS: The good clinical efficacy of headgear therapy with orthopedic forces is apparently based mainly on dentoalveolar effects, whereas the skeletal effect due to inhibition of sutural growth is somewhat questionable.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app