Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Blocking connexin43 expression reduces inflammation and improves functional recovery after spinal cord injury.

After traumatic CNS injury, a cascade of secondary events expands the initial lesion. The gap-junction protein connexin43 (Cx43), which is transiently up-regulated, has been implicated in the spread of 'bystander' damage. We have used an antisense oligodeoxynucleotide (asODN) to suppress Cx43 up-regulation in two rat models of spinal cord injury. Within 24 h of compression injury, rats treated with Cx43-asODN scored higher than sense-ODN and vehicle-treated controls on behavioural tests of locomotion. Their spinal cords showed less swelling and tissue disruption, less up-regulation of astrocytic GFAP, and less extravasation of fluorescently-labelled bovine serum albumin and neutrophils. The locomotor improvement was sustained over at least 4 weeks. Following partial spinal cord transection, Cx43-asODN treatment reduced GFAP immunoreactivity, neutrophil recruitment, and the activity of OX42(+) microglia in and around the lesion site. Cx43 has many potential roles in the pathophysiology of CNS injury and may be a valuable target for therapeutic intervention.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app