JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, U.S. GOV'T, NON-P.H.S.
Add like
Add dislike
Add to saved papers

Effect of base stacking on the acid-base properties of the adenine cation radical [A*+] in solution: ESR and DFT studies.

In this study, the acid-base properties of the adenine cation radical are investigated by means of experiment and theory. Adenine cation radical (A*(+)) is produced by one-electron oxidation of dAdo and of the stacked DNA-oligomer (dA)6 by Cl2*(-) in aqueous glass (7.5 M LiCl in H2O and in D2O) and investigated by ESR spectroscopy. Theoretical calculations and deuterium substitution at C8-H and N6-H in dAdo aid in our assignments of structure. We find the pKa value of A*(+) in this system to be ca. 8 at 150 K in seeming contradiction to the accepted value of < or = 1 at ambient temperature. However, upon thermal annealing to > or = 160 K, complete deprotonation of A*(+) occurs in dAdo in these glassy systems even at pH ca. 3. A*(+) found in (dA)6 at 150 K also deprotonates on thermal annealing. The stability of A*(+) at 150 K in these systems is attributed to charge delocalization between stacked bases. Theoretical calculations at various levels (DFT B3LYP/6-31G*, MPWB95, and HF-MP2) predict binding energies for the adenine stacked dimer cation radical of 12 to 16 kcal/mol. Further DFT B3LYP/6-31G* calculations predict that, in aqueous solution, monomeric A*(+) should deprotonate spontaneously (a predicted pKa of ca. -0.3 for A*(+)). However, the charge resonance stabilized dimer AA*(+) is predicted to result in a significant barrier to deprotonation and a calculated pKa of ca. 7 for the AA*(+) dimer which is 7 pH units higher than the monomer. These theoretical and experimental results suggest that A*(+) isolated in solution and A*(+) in adenine stacks have highly differing acid-base properties resulting from the stabilization induced by hole delocalization within adenine stacks.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app