JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Nonradiative deexcitation dynamics of 9H-adenine: an OM2 surface hopping study.

The nonradiative relaxation of 9H-adenine was studied at the semiempirical OM2/MR-CI level using the surface-hopping approach. Geometry optimizations of energy minima and conical intersections as well as single-point calculations of excitation energies at critical points were performed to characterize the relevant potential energy surfaces of 9H-adenine and to assess the accuracy of the OM2 results. Surface-hopping calculations were performed to describe the nonradiative dynamics of 9H-adenine after vertical excitation into the optically active state. They showed that the deexcitation process is mainly governed by a two-step relaxation consisting of an ultrashort component and a longer component. These findings compare well with experimental results from time-resolved photoelectron spectroscopy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app