Add like
Add dislike
Add to saved papers

Radiofrequency ablation: the effect of distance and baseline temperature on thermal dose required for coagulation.

PURPOSE: To determine the effects of applied current, distance from an RF electrode and baseline tissue temperature upon thermal dosimetry requirements to induce coagulation in ex vivo bovine liver and in vivo porcine muscle models.

MATERIALS AND METHODS: RF ablation was performed in ex vivo liver at varying baseline temperatures-19-21 degrees C (n = 114), 8-10 degrees C (n = 27), and 27-28 degrees C (n = 27)-using a 3-cm tip electrode and systematically varied current 400-1,300 mA, to achieve defined diameters of coagulation (20, 30 and 40 +/- 2 mm), and in in vivo muscle (n = 18) to achieve 35 mm +/- 2 mm of coagulation. Thermal dose required for coagulation was calculated as the area under the curve and cumulative equivalent minutes at 43 degrees C.

RESULTS: Thermal dose correlated with current in a negative exponential fashion for all three diameters of coagulation in ex vivo experiments (p < 0.001). The temperatures at the end of RF heating at the ablation margin were not reproducible, but varied 38 degrees C-74.7 degrees C, for 30 mm coagulation in ex vivo liver, and 59.8 degrees C-68.4 degrees C in the in vivo experiment. CEM(43) correlated with current as a family of positive exponential functions (r(2) = 0.76). However, a very wide range of CEM(43) values (on the order of 10(15)) was noted. Although baseline temperatures in the ex vivo experiment did not change required thermal dose, the relationships between end temperature at the ablation margin and RF current were statistically different (p < 0.001) as analysed at the 400 mA intercept.

CONCLUSIONS: In both models, thermal dosimetry required to achieve coagulation was not constant, but current and distance dependent. Hence, other formulas for thermal dose equivalence may be needed to predict conditions for thermal ablation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app