JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Bifunctional metal-salen complexes as efficient catalysts for the fixation of CO2 with epoxides under solvent-free conditions.

A bifunctional cobalt-salen complex containing a Lewis acidic metal center and a quaternary phosphonium salt unit anchored on the ligand effectively catalyzes the synthesis of cyclic carbonates from CO2 and epoxides under mild conditions without the utilization of additional organic solvents or co-catalysts. The effects of various reaction variables on the catalytic performance were studied in detail and indicate an optimized reaction temperature of about I00 degrees C and CO2 pressure of around 4 MPa, although the reaction proceeds smoothly even at pressures as low as 2 MPa. The catalyst is applicable to a variety of epoxides, producing the corresponding cyclic carbonates in good yields in most cases. Furthermore, the catalyst can be easily recovered and reused several times without significant loss of its catalytic activity. This process thus represents a greener pathway for the environmentally benign chemical fixation of CO2 to produce cyclic carbonates.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app