JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Regulation of human beta-defensin-2 by Mycobacterium bovis bacillus Calmette-Guérin (BCG): involvement of PKC, JNK, and PI3K in human lung epithelial cell line (A549).

Peptides 2008 October
Human beta-defensin (HBD)-2 is an inducible antimicrobial peptide that plays an important role in innate immunity. Induction of this peptide by mycobacteria in epithelial cells has been reported. However, the mechanism(s) by which Mycobacterium bovis bacillus Calmette-Guérin (BCG) triggers gene transcription of HBD-2 remains poorly understood. In the present work we found that treatment of human epithelial cells with Ro32-0432 or Gö6976, two selective inhibitors of protein kinase C (PKC), significantly reduced the effect of M. bovis BCG on induced HBD-2 mRNA expression (65 and 80% inhibition by 10microM Ro32-0432, and 1microM Gö6976 as assessed by real-time PCR, respectively). Moreover, there was increased activation of c-Jun N-terminal kinase (JNK) and phosphatidylinositol-3-kinase (PI3K)/Akt in A549 cells infected with M. bovis BCG, and this JNK and PI3K activation was mediated through PKC. Finally, we found that M. bovis BCG-induced HBD-2 mRNA gene expression in A549 cells was dependent on JNK, and PI3K determined by real-time PCR analysis, which was attenuated by inhibitors of JNK (SP600125 and AG126), and PI3K (wortmannin and Ly294002). These studies are the first to show that M. bovis BCG-induced HBD-2 mRNA expression in A549 cells is regulated at least in part through activation of signaling proteins of PKC, JNK and PI3K.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app