JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Maximum a posteriori estimation of diffusion tensor parameters using a Rician noise model: why, how and but.

NeuroImage 2008 October 2
The diffusion tensor is a commonly used model for diffusion-weighted MR image data. The parameters are typically estimated by ordinary or weighted least squares on log-transformed data, assuming normal or log-normal distribution of measurement errors respectively. This may not be adequate when using high b-values and or performing high-resolution scans, resulting in poor SNR, in which case the difference between the assumed and the true (Rician) noise model becomes important. As a consequence the estimated diffusion parameters will be biased, underestimating the true diffusion. In this paper a computational framework is presented where parameters pertaining to a spectral decomposition of the diffusion tensor are estimated using a Rician noise model. The parameters are estimated using a Fisher-scoring scheme which gives robust and rapid convergence. It is demonstrated how the Fisher-information matrix can be used as a generic tool for designing optimal experiments. It is shown that the Rician noise model leads to significantly less biased estimates for a large range of b-values and SNR, but that the Rician estimates have a poorer precision compared to the Gaussian model for very low SNR. By pooling the Rician estimates of uncertainty over neighbouring voxel estimates with higher precision, but still not as high as with a Gaussian model, can be obtained. We suggest the use of a Rician estimator when it is important with truly quantitative values and when comparing different predictive models. The higher precision of the Gaussian estimates may be more important when the objective is to compare diffusion related parameters over time or across groups.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app