Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

A SMNDelta7 read-through product confers functionality to the SMNDelta7 protein.

Neuroscience Letters 2008 September 6
Spinal muscular atrophy (SMA) affects about 1 in every 6000 children born and is the leading genetic cause of infant death. SMA is a recessive disorder caused by the mutation or deletion of Survival Motor Neuron-1 (SMN1). SMN2, a nearly identical copy gene, has the potential to encode the same protein as SMN1 and is retained in all SMA patients. The majority of SMN2-derived transcripts are alternatively spliced and therefore encode a truncated isoform lacking exon 7 (SMNDelta7), which is a defective protein because it is unstable, has a reduced ability to self-associate and is unable to efficiently function in SMN cellular activities. However, we have shown that the SMN C-terminus functions non-specifically, since heterologous sequences can compensate for the exon 7 sequence. Several classes of compounds identified in SMN-inducing high throughput screens have been proposed to function through a read-through mechanism; however, a functional analysis of the SMNDelta7 read-through product has not been performed. In this report, the SMNDelta7 read-through product is characterized and compared to the SMNDelta7 protein. In a series of in vitro and cell based assays, SMNDelta7 read-through product is shown to increase protein stability, promote neurite outgrowths in SMN deficient neurons, and significantly elevate SMN-dependent UsnRNP assembly in extracts from SMA patient fibroblasts. Collectively, these results demonstrate that SMNDelta7 read-through product is more active than the SMNDelta7 protein and suggest that SMA therapeutics that specifically induce SMNDelta7 read-through may provide an alternative platform for drug discovery.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app