Add like
Add dislike
Add to saved papers

Integrated computational approach to vibrationally resolved electronic spectra: anisole as a test case.

A new general and effective procedure to compute Franck-Condon spectra from first principles is exploited to elucidate the subtle features of the vibrationally resolved optical spectra of anisole. Methods based on the density functional theory and its time-dependent extension for electronic excited states [B3LYP6-311+G(d,p) and TD-B3LYP6-311+G(d,p)] have been applied to geometry optimizations and harmonic frequency calculations. Perturbative anharmonic frequencies [J. Chem. Phys. 122, 014108 (2005)] have been calculated for the ground state, and the Duschinsky matrix elements have been used to evaluate the corresponding anharmonic corrections for the first excited electronic state. The relative energetics of both electronic states has been refined by single point calculations at the coupled clusters (CC) level with the aug-cc-pVDZ basis set. Theoretical spectra have been evaluated using a new optimized implementation for the effective computation of Franck-Condon factors. The remarkable agreement between theoretical and experimental spectra allowed for revision of some assignments of fundamental vibrations in the S(1) state of anisole.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app