JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Intracellular calcium leak due to FKBP12.6 deficiency in mice facilitates the inducibility of atrial fibrillation.

BACKGROUND: Although defective Ca(2+) homeostasis may contribute to arrhythmogenesis in atrial fibrillation (AF), the underlying molecular mechanisms remain poorly understood. Studies in patients with AF revealed that impaired diastolic closure of sarcoplasmic reticulum (SR) Ca(2+)-release channels (ryanodine receptors, RyR2) is associated with reduced levels of the RyR2-inhibitory subunit FKBP12.6.

OBJECTIVE: The objective of the present study was to test the hypothesis that Ca(2+) leak from the SR through RyR2 increases the propensity for AF in FKBP12.6-deficient (-/-) mice.

METHODS: Surface electrocardiogram and intracardiac electrograms were recorded simultaneously in FKBP12.6-/- mice and wild-type (WT) littermates. Right atrial programmed stimulation was performed before and after injection of RyR2 antagonist tetracaine (0.5 mg/kg). Intracellular Ca(2+) transients were recorded in atrial myocytes from FKBP12.6-/- and WT mice.

RESULTS: FKBP12.6-/- mice had structurally normal atria and unaltered expression of key Ca(2+)-handling proteins. AF episodes were inducible in 81% of FKBP12.6-/-, but in only 7% of WT mice (P <.05), and were prevented by tetracaine in all FKBP12.6-/- mice. SR Ca(2+) leak in FKBP12.6-/- myocytes was 53% larger than in WT myocytes, and FKBP12.6-/- myocytes showed increased incidence of spontaneous SR Ca(2+) release events, which could be blocked by tetracaine.

CONCLUSION: The increased vulnerability to AF in FKBP12.6-/- mice substantiates the notion that defective SR Ca(2+) release caused by abnormal RyR2 and FKBP12.6 interactions may contribute to the initiation or maintenance of atrial fibrillation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app