JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Neurokinin 2 receptor-mediated activation of protein kinase C modulates capsaicin responses in DRG neurons from adult rats.

Patch-clamp techniques and Ca2+ imaging were used to examine the interaction between neurokinins (NK) and the capsaicin(CAPS)-evoked transient receptor potential vanilloid receptor 1 (TRPV1) responses in rat dorsal root ganglia neurons. Substance P (SP; 0.2-0.5 microM) prevented the reduction of Ca2+ transients (tachyphylaxis) evoked by repeated brief applications of CAPS (0.5 microM). Currents elicited by CAPS were increased in amplitude and desensitized more slowly after administration of SP or a selective NK2 agonist, [Ala8]-neurokinin A (4-10) (NKA). Neither an NK1-selective agonist, [Sar9, Met11]-SP, nor an NK3-selective agonist, [MePhe7]-NKB, altered the CAPS currents. The effects of SP on CAPS currents were inhibited by a selective NK2 antagonist, MEN10,376, but were unaffected by the NK3 antagonist, SB 235,375. Phorbol 12,13-dibutyrate (PDBu), an activator of protein kinase C(PKC), also increased the amplitude and slowed the desensitization of CAPS responses. Phosphatase inhibitors, decamethrin and alpha-naphthyl acid phosphate (NAcPh), also enhanced the currents and slowed desensitization of CAPS currents. Facilitatory effects of SP, NKA and PDBu were reversed by bisindolylmaleimide, a PKC inhibitor, and gradually decreased in magnitude when the agents were administered at increasing intervals after CAPS application. The decrease was partially prevented by prior application of NAcPh. These data suggest that activation of NK2 receptors in afferent neurons leads to PKC-induced phosphorylation of TRPV1, resulting in sensitization of CAPS-evoked currents and slower desensitization. Thus, activation of NK2 autoreceptors by NKs released from the peripheral afferent terminals or by mast cells during inflammatory responses may be a mechanism that sensitizes TRPV1 channels and enhances afferent excitability.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app