Add like
Add dislike
Add to saved papers

Human cytomegalovirus infection alters the expression of cellular microRNA species that affect its replication.

Journal of Virology 2008 September
The human genome encodes over 500 microRNAs (miRNAs), small RNAs (19 to 26 nucleotides [nt]) that regulate the expressions of diverse cellular genes. Many cellular processes are altered through a variety of mechanisms by human cytomegalovirus (HCMV) infection. We asked whether HCMV infection leads to changes in the expression of cellular miRNAs and whether HCMV-regulated miRNAs are important for HCMV replication. Levels of most miRNAs did not change markedly during infection, but some were positively or negatively regulated. Patterns of miRNA expression were linked to the time course of infection. Some similarly reregulated miRNAs share identical or similar seed sequences, suggesting coordinated regulation of miRNA species that have shared targets. miRNAs miR-100 and miR-101 were chosen for further analyses based on their reproducible changes in expression after infection and on the basis of having predicted targets in the 3' untranslated regions (3'-UTR) of genes encoding components of the mammalian target of rapamycin (mTOR) pathway, which is important during HCMV infection. Reporter genes that contain the 3'-UTR of mTOR (predicted targets for miR-100 and miR-101) or raptor (a component of the mTOR pathway; predicted site for miR-100) were constructed. Mimics of miR-100 and miR-101 inhibited expression from the mTOR construct, while only miR-100 inhibited the raptor construct. Together, miR-100 and miR-101 reduced mTOR protein levels. While the miR-100 and miR-101 mimics individually modestly inhibited production of infectious progeny, much greater inhibition was achieved with a combination of both (33-fold). Our key finding is that HCMV selectively manipulates the expression of some cellular miRNAs to help its own replication.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app