JOURNAL ARTICLE
RESEARCH SUPPORT, N.I.H., EXTRAMURAL
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Arsenic trioxide and auranofin inhibit selenoprotein synthesis: implications for chemotherapy for acute promyelocytic leukaemia.

BACKGROUND AND PURPOSE: Arsenicals have been used medicinally for decades to treat both infectious disease and cancer. Arsenic trioxide (As2O3) is effective for treatment of acute promyelocytic leukaemia (APL), yet the mechanism of action of this drug is still widely debated. Recently, As2O3 was shown to inhibit the activity of the selenoenzyme thioredoxin reductase (TrxR). TrxR has been proposed to be required for selenium metabolism. The effect of inhibitors of TrxR on selenium metabolism has yet to be assessed. This study aims to determine whether chemotherapeutics that target selenocysteine within selenoenzymes may also affect the metabolism of selenium.

EXPERIMENTAL APPROACH: A lung cell line, A549, was used to assess the effect of TrxR inhibitors on selenium metabolism, using 75Se-selenite. The level of mRNA encoding cytosolic TrxR (TrxR1) was determined using real-time reverse transcriptase-PCR. TrxR activity was determined in whole-cell extracts.

KEY RESULTS: Exposure of cells to As2O3, arsenite or auranofin led to a concentration-dependent reduction of selenium metabolism into selenoproteins. Knockdown of TrxR1, using small inhibitory RNA, did not affect selenium metabolism. Exposure of cells to monomethylarsonic acid, a potent inhibitor of TrxR, did not alter selenium metabolism but did inhibit enzyme activity.

CONCLUSIONS AND IMPLICATIONS: As2O3 and auranofin block the metabolism of selenium in A549 cells. Because As2O3 is used to treat APL, our findings may reveal the mechanism of this therapeutic action and lead to further research targeting selenium metabolism to find novel chemotherapeutic agents for the treatment of APL.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app