Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

STAT-1- and IRF-3-dependent pathways are not essential for repression of ICP0-null mutant herpes simplex virus type 1 in human fibroblasts.

Journal of Virology 2008 September
Efficient herpes simplex virus type 1 (HSV-1) infection of human fibroblasts (HFs) is highly dependent on the viral immediate-early regulatory protein ICP0 unless the infection is conducted at a high multiplicity. ICP0-null mutant HSV-1 exhibits a plaque-forming defect of up to 3 orders of magnitude in HFs, whereas in many other cell types, this defect varies between 10- and 30-fold. The reasons for the high ICP0 requirement for HSV-1 infection in HFs have not been established definitively. Previous studies using other cell types suggested that ICP0-null mutant HSV-1 is hypersensitive to interferon and that this sensitivity is dependent on the cellular promyelocytic leukemia (PML) protein. To investigate the roles of two important aspects of interferon signaling in the phenotype of ICP0-null mutant HSV-1, we isolated HFs depleted of STAT-1 or interferon regulatory factor 3 (IRF-3). Surprisingly, plaque formation by the mutant virus was not improved in either cell type. We found that the sensitivity to interferon pretreatment of both ICP0-null mutant and wild-type (wt) HSV-1 was highly dependent on the multiplicity of infection. At a low multiplicity in virus yield experiments, both viruses were extremely susceptible to interferon pretreatment of HFs, but the sensitivity of the wild type but not the mutant could be overcome at higher multiplicities. We found that both wt and ICP0-null mutant HSV-1 remained sensitive to interferon in PML-depleted HFs albeit to an apparently lesser extent than in control cells. The data imply that the substantial reduction in ICP0-null HSV-1 infectivity at a low multiplicity in HFs does not occur through the activities of STAT-1- and IRF-3-dependent pathways and cannot be explained solely by enhanced sensitivity to interferon. We suggest that antiviral activities induced by interferon may be separable from and additive to those resulting from PML-related intrinsic resistance mechanisms.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app