Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

A TCP domain transcription factor controls flower type specification along the radial axis of the Gerbera (Asteraceae) inflorescence.

Several key processes in plant development are regulated by TCP transcription factors. CYCLOIDEA-like (CYC-like) TCP domain proteins have been shown to control flower symmetry in distantly related plant lineages. Gerbera hybrida, a member of one of the largest clades of angiosperms, the sunflower family (Asteraceae), is an interesting model for developmental studies because its elaborate inflorescence comprises different types of flowers that have specialized structures and functions. The morphological differentiation of flower types involves gradual changes in flower size and symmetry that follow the radial organization of the densely packed inflorescence. Differences in the degree of petal fusion further define the distinct shapes of the Gerbera flower types. To study the role of TCP transcription factors during specification of this complex inflorescence organization, we characterized the CYC-like homolog GhCYC2 from Gerbera. The expression of GhCYC2 follows a gradient along the radial axis of the inflorescence. GhCYC2 is expressed in the marginal, bilaterally symmetrical ray flowers but not in the centermost disk flowers, which are nearly radially symmetrical and have significantly less fused petals. Overexpression of GhCYC2 causes disk flowers to obtain morphologies similar to ray flowers. Both expression patterns and transgenic phenotypes suggest that GhCYC2 is involved in differentiation among Gerbera flower types, providing the first molecular evidence that CYC-like TCP factors take part in defining the complex inflorescence structure of the Asteraceae, a major determinant of the family's evolutionary success.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app