JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Characterization of the PON1 active site using modeling simulation, in relation to PON1 lactonase activity.

Paraoxonase1 (PON1) is a HDL bound enzyme and many of the anti-atherogenic properties of HDL are attributed to PON1. The enzyme precise mechanism of protective action and its endogenous substrate remain elusive. PON1 hydrolyzes organophosphates, arylesters and lactones, whereas the lactones activity is assumed as the physio/pathological one. This study is aimed to predict the location of the PON1 active site within PON1 crystal structure, and the lactone structure suitability as PON1 ligand, by employing modeling techniques. Based on such calculations the ligands-PON1 interactions were characterized, and relating lactones rate of hydrolysis revealed an inverse correlation with the docking energy of the ligands-PON1 complex, and a direct correlation with the lactone side chain length. In conclusion, this study characterized the PON1 possible active site and proposes a tool which may make it possible to envisage the structure of potential endogenous and exogenous lactones such as the PON1 ligand.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app