Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Characterization of a complex Duchenne muscular dystrophy-causing dystrophin gene inversion and restoration of the reading frame by induced exon skipping.

Human Mutation 2009 January
Out of three mutations in the dystrophin gene that cause Duchenne muscular dystrophy (DMD), the most common, serious childhood muscle wasting disease, two are genomic deletions of one or more exons that disrupt the reading frame. Specific removal of an exon flanking a genomic deletion using antisense oligonucleotide intervention during pre-RNA processing can restore the reading frame and could potentially reduce disease severity. We describe a rare dystrophin gene rearrangement; inversion of approximately 28 kb, flanked by a 10-bp duplication and an 11-kb deletion, which led to the omission of exons 49 and 50 from the mature mRNA and the variable inclusion of several pseudoexons. In vitro transfection of cultured patient cells with antisense oligonucleotides directed at exon 51 induced efficient removal of that exon, as well as one of the more commonly included pseudoexons, suggesting closely coordinated splicing of these exons. Surprisingly, several antisense oligonucleotides (AOs) directed at this pseudoexon had no detectable effect on the splicing pattern, while all AOs directed at the other predominant pseudoexon efficiently excised that target. Antisense oligomers targeting dystrophin exon 51 for removal are currently undergoing clinical trials. Despite the unique nature of the dystrophin gene rearrangement described here, a personalized multiexon skipping treatment is applicable and includes one compound entering clinical trials for DMD.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app