JOURNAL ARTICLE

TAZ controls Smad nucleocytoplasmic shuttling and regulates human embryonic stem-cell self-renewal

Xaralabos Varelas, Rui Sakuma, Payman Samavarchi-Tehrani, Raheem Peerani, Balaji M Rao, Joanna Dembowy, Michael B Yaffe, Peter W Zandstra, Jeffrey L Wrana
Nature Cell Biology 2008, 10 (7): 837-48
18568018
Transforming growth factor-beta (TGFbeta) family members regulate many developmental and pathological events through Smad transcriptional modulators. How nuclear accumulation of Smad is coupled to the transcriptional machinery is poorly understood. Here we demonstrate that in response to TGFbeta stimulation the transcriptional regulator TAZ binds heteromeric Smad2/3-4 complexes and is recruited to TGFbeta response elements. In human embryonic stem cells TAZ is required to maintain self-renewal markers and loss of TAZ leads to inhibition of TGFbeta signalling and differentiation into a neuroectoderm lineage. In the absence of TAZ, Smad2/3-4 complexes fail to accumulate in the nucleus and activate transcription. Furthermore, TAZ, which itself engages in shuttling, dominantly controls Smad nucleocytoplasmic localization and can be retained in the nucleus by transcriptional co-factors such as ARC105, a component of the Mediator complex. TAZ thus defines a hierarchical system regulating Smad nuclear accumulation and coupling to the transcriptional machinery.

Full Text Links

Find Full Text Links for this Article

Discussion

You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read
18568018
×

Save your favorite articles in one place with a free QxMD account.

×

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"