Add like
Add dislike
Add to saved papers

Using layer-by-layer assembly of polyaniline fibers in the fast preparation of high performance fuel cell nanostructured membrane electrodes.

Membrane electrode assemblies (MEA) for fuel cells require optimization of their nanoscale organization to reach performance parameters, which include enhanced power density, increased catalyst utilization and reduced cost. We applied sprayed layer-by-layer assembly to produce a high activity MEA for H(2)/O(2) fuel cells from polyaniline fibers (PANI-F). This technique produces "fast-prepared" membranes with nanoscale structure, which allows to adequately address specific tuning of their porosity, platinum loading, electronic conductivity, and proton conductivity. Pt nanoparticles were attached to the PANI-F in a reaction of selective heterogeneous nucleation. After functionalization, Pt/PANI-F were assembled with Nafion. Microscopic investigation revealed that functionalized polyaniline fibers formed a highly porous yet tight network of interpenetrating conductors connected to the catalytic Pt particles. The Pt/PANI-F LBL ultrathin MEA demonstrated a power densitiy of 63 mW cm(-2) and yielded a Pt utilization of 437.5 W g(-1) Pt which is comparable to the traditional fuel cell using carbon black as Pt support. Moreover, the amount of Pt used in this work is almost 2 times lower than for usual carbon-supported Pt catalysts.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app