Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Magnetic circular dichroism spectroscopy of antiferromagnetically coupled hetero-metallic rings [H2NR2][Cr7MF8(O2CCMe3)16].

The optical and magnetic properties of the multi-metal rings [NH(2)R(2)][Cr(7)MF(8)(O(2)CCMe(3))(16)], where M = Cd(II), Mn(II) or Ni(II), have been studied using variable-field and variable-temperature magnetic circular dichroism (MCD) in the UV-visible spectra. Spectra of samples were recorded in a frozen organic matrix or cast in a polymethacrylate (PMMA) polymer film between 1.7 and 75 K. The spectra are characteristic of the Cr(III) ion (d(3)) in a rhombic field when M = Cd(II). In the case that M = Ni(II) additional optical transitions arise from the d(8) ion whereas for M = Mn(II) no additional transitions are observed. The influence of magnetic exchange is apparent from a change in the sign of the MCD signal between complexes in which the hetero-atom has a local spin moment greater, or less, than that of Cr(III), S = 3/2, namely, Mn(II), S = 5/2, and Ni(II), S = 1. The exchange coupling generates a manifold of thermally accessible electronic states that give rise to variations in MCD intensity as well as additional spectral features as the temperature is raised. Equations have been derived to relate the splittings observed in the optical spectrum to the single-ion ground state zero-field splittings of chromium(III). There is reasonable agreement between the sign and magnitude of the contribution to the cluster anisotropy from that of the single ion with values estimated from other techniques.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app