Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Gain of oncogenic function of p53 mutants induces invasive phenotypes in human breast cancer cells by silencing CCN5/WISP-2.

Cancer Research 2008 June 16
CCN5/WISP-2 is overexpressed in noninvasive breast cancer cells and tissue samples, whereas its expression is minimal or undetected in invasive conditions. CCN5/WISP-2 has been considered as an antiinvasive gene because CCN5/WISP-2 silencing augments the invasive phenotypes in vitro. However, the mechanism of silencing of CCN5 during the progression of the disease has been elusive. Because p53 mutations are associated with breast cancer progression and have been shown to correlate inversely with CCN5/WISP-2 expression in other cancer cell types, the objective of this study was to explore whether p53 mutants suppress CCN5 expression in breast tumor cells resulting in the progression of this disease. We found CCN5 expression is inversely correlated with the mutational activation of p53 in human breast tumor cells. The ectopic expression of p53 mutants in ER-positive noninvasive breast tumor cells silenced the CCN5/WISP-2 expression and enhanced invasive phenotypes, including the induction of morphologic changes from the epithelial-to-mesenchymal type along with the alterations of hallmark proteins of these cell types and an augmentation of the migration of these cells. The suppression of CCN5 by the p53 mutants can be nullified by estrogen signaling in these cells through the transcriptional activation of the CCN5 gene. Moreover, the invasive changes can be imitated by blocking the CCN5/WISP-2 expression through RNA interference or can be reversed by the addition of CCN5/WISP-2 recombinant protein in the culture. Thus, these studies suggest that CCN5 inactivation could be an essential molecular event for p53 mutant-induced invasive phenotypes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app