Endurance exercise increases the SIRT1 and peroxisome proliferator-activated receptor gamma coactivator-1alpha protein expressions in rat skeletal muscle

Masataka Suwa, Hiroshi Nakano, Zsolt Radak, Shuzo Kumagai
Metabolism: Clinical and Experimental 2008, 57 (7): 986-98
Peroxisome proliferator-activated receptor gamma coactivator-1alpha (PGC-1alpha) is considered to play a pivotal role in the exercise-induced metabolic adaptation of skeletal muscle. Although the oxidized form of nicotinamide adenine dinucloetide (NAD(+))-dependent histone deacetylase SIRT1 has been shown to mediate PGC-1alpha-induced metabolic adaptation, the effect of endurance exercise on the SIRT1 protein remains to be elucidated. The purposes of this study were (1) to investigate the distribution of SIRT1 and PGC-1alpha proteins in skeletal muscle and (2) to examine the effects of acute endurance exercise and low- or high-intensity exercise training on SIRT1 and PGC-1alpha protein expressions and on the metabolic components in rat skeletal muscle. Both the SIRT1 and PGC-1alpha proteins preferentially accumulate in red oxidative muscles. Acute endurance exercise on a motor-driven treadmill (20 m/min, 18.5% incline, 45 minutes) increases the PGC-1alpha protein expression at 18 hours after exercise and the SIRT1 protein expression at 2 hours after exercise in the soleus muscle. In the training experiment, the rats were divided into control, low-intensity (20 m/min, 18.5% incline, 90 min/d), and high-intensity (30 m/min, 18.5% incline, 60 min/d) training groups. After 14 days of training, the SIRT1 and PGC-1alpha proteins, hexokinase activity, mitochondrial proteins and enzyme activities, and glucose transporter 4 protein in the soleus muscle were increased by both trainings. In the plantaris muscle, SIRT1, hexokinase activity, mitochondrial proteins and enzyme activities, and glucose transporter 4 were increased by high-intensity training whereas the PGC-1alpha was not. These results suggest that endurance exercise increases the skeletal muscle SIRT1 protein content. In addition, the findings also raise the possibility that the SIRT1 protein expression may play a potentially important role in such adaptations, whereas an increase in the PGC-1alpha protein expression is not necessary for such adaptations.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"