Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Kinetics of 2,6-dimethylaniline degradation by electro-Fenton process.

A new approach for promoting ferric reduction efficiency using a different electrochemical cell and the photoelectro-Fenton process has been developed to degrade organic toxic contaminants. The use of UVA light and electric current as electron donors can efficiently initiate the Fenton reaction. 2,6-Dimethylaniline (2,6-DMA) was the target compound in this study. Effects of initial pH (pH(i)), Fe(2+) loading, H(2)O(2) concentration and current density were determined to test and to validate a kinetic model for the oxidation of organic compound by the electro-Fenton process. Kinetic results show evidence of pseudo-first-order degradation. When reaction pH was higher than 2, amorphous Fe(OH)(3(s)) was generated. Increasing ferrous ion concentration from 1.0 to 1.5 mM increased the hydroxyl radicals and then promote the degradation efficiency of 2,6-DMA. The optimal H(2)O(2) concentration for 2,6-DMA degradation in this study was 25 mM. The degradation of 2,6-DMA was increased with the increase of current density from 3.5 to 10.6 A/m(2). Oxalic acid was the major detected intermediate of 2,6-DMA degradation. The final TOC removal efficiencies were 10%, 15%, 60% and 84% using the electrolysis, Fenton, electro-Fenton and photoelectro-Fenton processes, respectively.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app