JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Gene expression profiling of human mesenchymal stem cells for identification of novel markers in early- and late-stage cell culture.

Human mesenchymal stem cells (hMSCs) are multipotent cells that differentiate into several cell types, and are expected to be a useful tool for cellular therapy. Although the hMSCs differentiate into osteogenic cells during early to middle stages, this differentiation capacity decreases during the late stages of cell culture. To test a hypothesis that there are biomarkers indicating the differentiation potential of hMSCs, we performed microarray analyses and profiled the gene expression in six batches of hMSCs (passages 4-28). At least four genes [necdin homolog (mouse) (NDN), EPH receptor A5 (EPHA5), nephroblastoma overexpressed gene (NOV) and runt-related transcription factor 2 (RUNX2)] were identified correlating with the passage numbers in all six batches. The results showed that the osteogenic differentiation capacity of hMSCs is down-regulated in the late stages of cell culture. It seemed that adipogenic differentiation capacity was also down-regulated in late stage of the culture. The cells in late stage are oligopotent and the genes identified in this study have the potential to act as quality-control markers of the osteogenic differentiation capacity of hMSCs.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app