Comparative Study
Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Proteomes of the aphid Macrosiphum euphorbiae in its resistance and susceptibility responses to differently compatible parasitoids.

Host insects are either susceptible or resistant to parasitoids, where resistant hosts express immunity factors and compatible parasitoids express virulence factors that may reveal the manipulation of susceptible hosts. Using proteomics we compared responses of the same host, the aphid Macrosiphum euphorbiae, challenged by a well-adapted parasitoid Aphidius nigripes or by a less adapted relative, Aphidius ervi. The host was found to be equally acceptable to both parasitoids, but while A. nigripes normally developed and killed hosts (high susceptibility), development of the incompatible A. ervi was arrested at the primary egg stage (high resistance). Two-dimensional gels at two stages of parasitism revealed divergence in patterns of protein regulation of the M. euphorbiae host, responding to A. ervi or A. nigripes, with the greatest number of protein modulations in the host resistance response. In A. ervi-resistant hosts, proPO was strongly up-regulated, as were also three cuticle proteins, suggesting a PO basis and exoskeleton reinforcement as early and late responses of M. euphorbiae to the risk of parasitism. Resistance also correlated with up-regulation of antioxidative, energy-related, cytoskeleton and heat shock proteins. In A. nigripes-susceptible hosts, various proteins implicated in host and bacterial symbiont metabolism were significantly altered, suggesting complex host nutritional modulation. Over-expression of energy-related proteins also increased when A. nigripes established and developed. Aphid proteomes of compatible and incompatible Aphidius parasitism provide an integrative basis for consolidating our knowledge of host-parasitoid interactions.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app