Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Hierarchy of nonhomologous end-joining, single-strand annealing and gene conversion at site-directed DNA double-strand breaks.

In mammalian cells, DNA double-strand breaks (DSBs) are repaired by three pathways, nonhomologous end-joining (NHEJ), gene conversion (GC) and single-strand annealing (SSA). These pathways are distinct with regard to repair efficiency and mutagenic potential and must be tightly controlled to preserve viability and genomic stability. Here, we employed chromosomal reporter constructs to characterize the hierarchy of NHEJ, GC and SSA at a single I-SceI-induced DSB in Chinese hamster ovary cells. We discovered that the use of GC and SSA was increased by 6- to 8-fold upon loss of Ku80 function, suggesting that NHEJ is dominant over the other two pathways. However, NHEJ efficiency was not altered if GC was impaired by Rad51 knockdown. Interestingly, when SSA was made available as an alternative mode for DSB repair, loss of Rad51 function led to an increase in SSA activity at the expense of NHEJ, implying that Rad51 may indirectly promote NHEJ by limiting SSA. We conclude that a repair hierarchy exists to limit the access of the most mutagenic mechanism, SSA, to the break site. Furthermore, the cellular choice of repair pathways is reversible and can be influenced at the level of effector proteins such as Ku80 or Rad51.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app