Journal Article
Review
Add like
Add dislike
Add to saved papers

Targeting toll-like receptor signaling pathways for design of novel immune therapeutics.

The Toll-like receptor (TLR) family plays a fundamental role in host innate immunity by mounting a rapid and potent inflammatory response to pathogen infection. TLRs recognize distinct microbial components and activate intracellular signaling pathways that induce expression of host inflammatory genes. Extensive research in the past decade to understand TLR-mediated mechanisms of innate immunity has enabled pharmaceutical companies to begin to develop novel therapeutics for the purpose of controlling inflammatory disease. Initially, extracellular TLR agonists were designed to compete with natural microbial ligands for binding to TLRs. More recently, basic research to identify new targets for drug development has begun to explore modulation of TLR intracellular signaling pathways, in addition to TLR ligand binding. In this review, we will discuss recent strategies, including the use of decoy peptides and mimetics, plant polyphenols, and chemically modified antisense oligonucleotides, that inhibit different molecular events in TLR signaling pathways to modulate the inflammatory response. The molecular mechanisms of these inhibitors range from interference with protein-protein interactions between signaling proteins, to inhibition of transcription factor activity, to perturbation of the plasma membrane, and are derived from host, pathogen, and plant sources and by rational design. Taken together, these studies represent promising avenues for the development of novel tailored immune therapeutics that can relieve the great toll inflicted by inflammatory disease on human health and quality of life.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app