JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Determination of 13C/12C ratios of endogenous urinary steroids: method validation, reference population and application to doping control purposes.

The application of a comprehensive gas chromatography/combustion/isotope ratio mass spectrometry (GC/C/IRMS)-based method for stable carbon isotopes of endogenous urinary steroids is presented. The key element in sample preparation is the consecutive cleanup with high-performance liquid chromatography (HPLC) of underivatized and acetylated steroids, which allows the isolation of ten analytes (11beta-hydroxyandrosterone, 5alpha-androst-16-en-3beta-ol, pregnanediol, androsterone, etiocholanolone, testosterone, epitestosterone, 5alpha-androstane-3alpha,17beta-diol, 5beta-androstane-3alpha,17beta-diol and dehydroepiandrosterone) from a single urine specimen. These steroids are of particular importance to doping controls as they enable the sensitive and retrospective detection of steroid abuse by athletes. Depending on the biological background, the determination limit for all steroids ranges from 5 to 10 ng/mL for a 10 mL specimen. The method is validated by means of linear mixing models for each steroid, which covers repeatability and reproducibility. Specificity was further demonstrated by gas chromatography/mass spectrometry (GC/MS) for each analyte, and no influence of the sample preparation or the quantity of analyte on carbon isotope ratios was observed. In order to determine naturally occurring (13)C/(12)C ratios of all implemented steroids, a reference population of n = 61 subjects was measured to enable the calculation of reference limits for all relevant steroidal Delta values.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app