JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Theory of resonance energy transfer involving nanocrystals: the role of high multipoles.

A theory for the fluorescence resonance energy transfer (FRET) between a pair of semiconducting nanocrystal quantum dots is developed. Two types of donor-acceptor couplings for the FRET rate are described: dipole-dipole (d-d) and the dipole-quadrupole (d-q) couplings. The theory builds on a simple effective mass model that is used to relate the FRET rate to measureable quantities such as the nanocrystal size, fundamental gap, effective mass, exciton radius, and optical permittivity. We discuss the relative contribution to the FRET rate of the different multipole terms, the role of strong to weak confinement limits, and the effects of nanocrystal sizes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app