Does Fgf23-klotho activity influence vascular and soft tissue calcification through regulating mineral ion metabolism?

Fahad Memon, Mohga El-Abbadi, Teruyo Nakatani, Takashi Taguchi, Beate Lanske, M Shawkat Razzaque
Kidney International 2008, 74 (5): 566-70
Recent studies describe a novel role of fibroblast growth factor-23 (Fgf23)-klotho activity in the systemic regulation of calcium and phosphate homeostasis. Both Fgf23 and klotho ablated mice develop extensive vascular and soft tissue calcification. Inability to clear the required amount of phosphate by the kidney, due to the absence of Fgf23-klotho activity, leads to increased accumulation of serum phosphate in these genetically modified mice, causing extensive calcification. Serum calcium and 1,25 hydroxyvitamin D levels are also elevated in both Fgf23 and klotho ablated mice. Moreover, increased sodium phosphate co-transporter activity in both Fgf23 and klotho ablated mice increases renal phosphate reabsorption which in turn can facilitate calcification. Collectively, these observations bring new insights into our understanding of the roles of the Fgf23-klotho axis in the development of vascular and soft tissue calcification.

Full Text Links

Find Full Text Links for this Article


You are not logged in. Sign Up or Log In to join the discussion.

Related Papers

Remove bar
Read by QxMD icon Read

Save your favorite articles in one place with a free QxMD account.


Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"