JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Cloning, expression, and characterization of a new xylanase with broad temperature adaptability from Streptomyces sp. S9.

A new xylanase gene, xynAS9, was cloned from Streptomyces sp. S9, which was isolated from Turpan Basin, China. The full-length gene consists of 1,395 bp and encodes 465 amino acids including 38 residues of a putative signal peptide. The overall amino acid sequence shares the highest identity (50.8%) with a putative endo-1,4-beta-xylanase from Streptomyces avermitilis of the glycoside hydrolase family 10. The gene fragment encoding the mature xylanase was expressed in Escherichia coli BL21 (DE3). The recombinant protein was purified to electrophoretic homogeneity and subsequently characterized. The optimal pH and temperature for the recombinant enzyme were 6.5 and 60 degrees C, respectively. The enzyme showed broad temperature adaptability, retaining more than 65% of the maximum activity when assayed at 50-80 degrees C. The enzyme also had good thermal and pH stability. The Km values for oat spelt xylan and birchwood xylan substrates were 2.85 and 2.43 mg ml(-1), with the Vmax values of 772.20 and 490.87 micromol min(-1) mg(-1), respectively. The hydrolysis products of xylan were mainly xylose and xylobiose. These favorable properties should make XynAS9 a good candidate in various industrial applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app