JOURNAL ARTICLE
RESEARCH SUPPORT, NON-U.S. GOV'T
Add like
Add dislike
Add to saved papers

Combining nanoliposomal ceramide with sorafenib synergistically inhibits melanoma and breast cancer cell survival to decrease tumor development.

PURPOSE: Deregulation of phosphatidylinositol 3-kinase/Akt and Ras/Raf/mitogen-activated protein kinase/extracellular signal-regulated kinase kinase/extracellular signal-regulated kinase pathways occurs in melanoma and breast cancer, deregulating normal cellular apoptosis and proliferation. Therapeutic cocktails simultaneously targeting these pathways could promote synergistically acting tumor inhibition. However, agents with manageable toxicity and mechanistic basis for synergy need identification. The purpose of this study is to evaluate the preclinical therapeutic efficacy and associated toxicity of combining sorafenib with nanoliposomal ceramide.

EXPERIMENTAL DESIGN: Effects of sorafenib and nanoliposomal ceramide as single and combinatorial agents were examined on cultured cells using 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium salt assays and CalcuSyn software used to assess synergistic or additive inhibition. Western blotting measured cooperative effects on signaling pathways. Rates of proliferation, apoptosis, and angiogenesis were measured in size- and time-matched tumors to identify mechanistic basis for inhibition. Toxicity was evaluated measuring animal weight, blood toxicity parameters, and changes in liver histology.

RESULTS: Sorafenib and nanoliposomal ceramide synergistically inhibited cultured cells by cooperatively targeting mitogen-activated protein kinase and phosphatidylinositol 3-kinase signaling. A 1- to 2-fold increase in cellular apoptosis and 3- to 4-fold decrease in cellular proliferation were observed following combination treatment compared with single agents, which caused synergistically acting inhibition. In vivo, an approximately 30% increase in tumor inhibition compared with sorafenib treatment alone and an approximately 58% reduction in tumor size compared with nanoliposomal ceramide monotherapy occurred by doubling apoptosis rates with negligible systemic toxicity.

CONCLUSIONS: This study shows that nanoliposomal ceramide enhances effectiveness of sorafenib causing synergistic inhibition. Thus, a foundation is established for clinical trials evaluating the efficacy of combining sorafenib with nanoliposomal ceramide for treatment of cancers.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app